RAPID COMMUNICATIONS

Eigenvalue density of correlated complex random Wishart matrices
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Using a character expansion method, we calculate exactly the eigenvalue density of random matrices of the
form M™™M whereM is a complex matrix drawn from a normalized distributiBtM ) ~ exp(-Tr{AMBM T})
with A and B positive definite(squaré matrices of arbitrary dimensions. Such so-called correlated Wishart
matrices occur in many fields ranging from information theory to multivariate analysis.
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Physicists usually think of Wigner and Dyson as the fa- N
thers of random matrix theorjd,2]. However, 20 years be- G,2=\ [l \,=2" ) =(detM™ -2)"), (2
fore their first work on the subject, Wisha8] examined n=1
random matrices of the forrVM T as a tool for studying
multivariate data. The properties of these so-called Wishart NG
matrices, which are viewed as “fundamental to multivariate _ _ _
statistical analysisT4], also find important applications in H(2)=9G,(2)]0 V0= n%'”“” 2/ 3)
fields like information theory and communicatiofs—7],
mesoscopic$8], high ener hysic§9], and econophysics i , i i
gy Scopiessl. igh energy phySICE] Py COO =lim_HO -1 ~HO +ig)2mi, (4
In many cases one is interested in Wishart matrices where
the elements oM are not completely independent random N’ N
variables, but have correlations along rows and/or columns. =\ > on -\ :J dx p(x), (5)
Important examples of this case occur in data analysis prob- n=1 o0
lems[11], where random samples have temporal and spatial
correlations, and particularly in wireless communication and N
information theory[5,6]. The purpose of this paper is to de- \) = dCOV/dN = SN =\ 6
rive the eigenvalue density of correlated complex Wishart PN M) gl ( W/ ©®

matrices exactly. This problem has been solved previously

(and applications discusseth the limit of large matrices whered is the step function) is assumed real, and in going
[6,11). However, there are many situations where one is exfrom Eq. (4) to Eq. (5) we have used lim,q Im In(=y+ie)
plicitly interested in matrices of finite sizeor even small  =6(y), which is true for realy. The quantity we are most
size) [5-8], which we address in the current paper. We notenterested in is the eigenvalue density\). From Egs.
that if eitherA or B is proportional to unity, simpler tech- (2)~(6) it is clear that we can obtaip by calculatingG,(z).

niques can be used?2]. Below, we will show that
We first define the problem more precisely. IMtbe an
NX N’ complex matrix chosen from a normalized distribu- G,(2 =Q,(2R, detLy, (7)
tion
P(M) = 7NV A exp(—- THAMBM T}) (1) Q, (2™ =A@ Ay (D) (- )N ND2g (8)

with A andB positive definite square matrices that define the

correlations, and Tr indicating the trace. Hera/! 3 _’ﬁl N 9
=defA]N'defB]N and the factors ofr are normalization Y v+, ©)
constants. An equivalent definition would be to Ist

=A"Y2z B~Y2 where Z is a random complex matrix with N~

independent entries of zero mean and unit covariance. Note NN
thatA is NX N andB is N’ X N’. Without loss of generality, R,= H (N+v-j) ' (10
we can assumi=N’. For any operato®(M) we define the =

expectation brack€) to be an average over realizations of whereR, is defined to be unity foN’=N-1. In Eq.(7), L;
M so that(O)zfdM O(M)P(M) Note that the normaliza- is an N X N matrix with e|ementg_ij :g(aibJ : V+N,Z) for J

tion is such that1)=1. <N’ andL;;=a/™ for j>N’, where we have defineg and
Let \, be theN’ eigenvalues oM '™ or equivalently the b; to be the eigenvalues of the matricksandB. The func-

N’ nonzero eigenvalues oM T (we will also haveN-N’  tion g is given by

eigenvalues oMM T precisely zerpn We define the follow-

ing quantities to calculate: g(x; @, 2) = XN (o, - zX) (11

1539-3755/2004/68)/0651014)/$22.50 69 065101-1 ©2004 The American Physical Society



S. H. SIMON AND A. L. MOUSTAKAS

:fo dA\(\A —2)* e (12)

0
with " the incomplete gamma functigt4], and we note that
for integera>0 we have the simple form

a-1
g, a,2) = XN a-1)1 > (- zX"/m!

m=0

(13

In Eq. (8) and throughout this paper we use the notation

IT  (x-x)=defx™

1<i<jsVv

Ay(x) = (14)

to represent &-dimensional Vandermonde determinant.

FromG,(z) we calculateC(\) using Egqs(3) and(4). The
differentiation[Eq. (3)] with respect tov brings down a fac-
tor of In(A—2) in the argument of Eq(12). This logarithm
becomes a step function when the limit is taken in &.
We obtain

N
C(\) =N’ = QMR detK(, (15)
n=1
where we also use®,-o(z) =1. Here, we have defined
XN matricesK™ with Ki(j”)=g(aabj;N,>\) for n#i and j
=N’ and Ki(j“):a{’1 for j>N’ andn#i. For the case of
=n we havng})ze‘aan‘*(N—l)! for j<N’ and Kg})zo for
j>N’".
We then differentiate Eq15) [see Eq(6)] to obtain

N
> detT™ |, (16)

m=1m#n

N
p(\) = QMR detRfj”) +
n=1

where K™ and T are Nx N matrices with elements de-
fined as follows: K{"=K{" for i#n and K{={ab;
+[N’(N'—1)/2]/)\}Kﬁ1'}) for j<N’ and Rf{}):o for j>N’.
Also T'™=K{" for i #m with T"™=(N-1)ab; g(anmb;,N
-1,\) for j<N’ andTﬁT']jm):O for j>N'.
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(which we will not keep track of explicitly but will fix at the
end of the calculation Here, Ay(\)? is the Vandermonde
determinant squared of the's (which is the Jacobian of the
transformatiom and

Dag(N) = de dv g TAUmvBY Tmfuty
’ U(N) U(N)

whereU andV are N X N unitary matrices which are inte-
grated with the usual Haar measure olN). Note that we
have written the integrdD, g as a function ok=mm? (we
will see that this is indeed trueHereCNAN()\)zDA,B()\) is
precisely the joint probability density of thes. As such, it is
clear that this densitgand alsd) must vanish exponentially
if any of the\’s is taken to infinity(this will be important
below). In particular, wherA, B are identity matrices we can
see thaiDp g(N) ~ exp(—Z; \).

To address these integrals ou#iN), we use the character
expansion method discussed in depth in R&8]. This al-
lows us to write

e THAUmVBY Tmu'} _ > a,x,(AUMVBV Tmiut),
r

where o, are expansion coefficientgliscussed beloyy the
sum is over representationof GI(N), andy, is the charac-
ter of the group element in the proper representafibiote
that the representation theory G1(N) is identical to that of
U(N).] A character is just the trace taken in the proper rep-
resentation, so we have

x[(AUMVBV 'm™U") = AL UL m Vi BL VG ULy
with lower repeated indices summeédghile the superscripts
r tell us that the matrix is in representation We now use
the orthogonality property13]

J dU UgpUty= d 089
UNN)

The above expressions are our main results. The remain-

der of this paper comprises the proof of E¢8—11) from

with d, the dimension of representation{discussed below

which all of our other results follow. We start by focusing on combining the above three equations we obtain

the case of square matrichk (so N=N’). We write
G,(2) = Na N J dM e THAMBM ™} ey \m T = 2)7.

We then defineM =UmV wherem is a diagonal matrix of
the singular valuesn, of M andU andV are unitary matri-
ces. We then separate the integral oveinto integrals over
the eigenvalues\,=|m|?> of MM ' and “angular” integrals

over U and V. This approach, common in random matrix

theony1], yields

N
GV(Z)=CNJ dAlT (N -2"AWN)?Das(N), (17
=1

wherex=mm' is the diagonal matrix of eigenvaluag and

Dags(N) =X ad? x:(A)x:(B)x:(N). (18)

As discussed in Ref13], each representatianis specified
by a set of increasing integerstky<ky-;<--- <kq, so the
sum written over is actually an ordered sum over this
(kj=N+n;=]j in the notation of Ref[13]). In Ref.[13] it is
also found thate, =s(k)def1/(k;+i—N)!]=s(k)Ay(k)/C(k)
where C(K)=II\L jk;!. Here s(k)=(=1)" with v=N(N-1)/2

-2 kj. In the same worK13] it is also shown that,/d,

=s(k)Fy/C(k) with Fy=TI}5}" 1, from which we then obtain

o, d-% = s(K)F&/AN(KIC(K). (19

JAA=IIY, [5d\;, andC is anN-dependent numerical constant The Weyl character formula tells us tHat3]
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Xe(X) = defx;TJ/AN(x) (20) cN N .

G2 = (NI DI, d)\[{ (-2t
with k; the integers describing the representatipandx; the LN - .
eigenvalues ofX. Substituting Eq.(20) into Eq. (18) we . G kd +p
obtain X(-DTIE D X e dNH?\ ol ——

r dp---dy i=1 p=1 VHN- p’
ANNZDA s(N) = AN D D, det)\ikjL (21) We would now like to interchange the order of integration

and summation such that all integrals are done first. How-
ever, if we did this we would end up with divergent integrals.
" To fix this problem, we insert a cutoff function such as
D, = o, d "X, (A) x;(B). (22 f(\)=exg-4&\] and at the end of the calculation we takeo
zero.(The precise form of the cutoff function will not mat-

We next need the useful identity: , :
ter) This allows us to reorder and write

-1 N
AN()\): ~ I\:IIEN—l)IZde‘{( )\_I ) :|H()\n—Z)N_l. G,,(Z) N(N 1)/22(1) 2 Ecl CN 2 ed:L -dy
(-2 N-z) o Jpa -2 ey

To show this we note that sincay(\)=IIi;(\j—\;) we xH(— 1)Ci_1{f d)\if()\i)()\i—z)V’fN‘l)\:‘di
can freely add a constant to eachand not changd . Thus, i= 0
we have Ay(N)=Ay(N— z) Next we use An(Xq, ... XyN) -1 Ky + P
=ANG-LIXy, 1/xN)H o xJ ! s0 that we can relat&y(\) x 11 '—]
to Ay(1/[z- )\]) We then use Az—N)-1/z=\I[z(z—\)] p=1 VtN-p

and we again shift each term in the Vandermonde determlwe can now do the sums oves andd's to obtain
nant by -1z Finally, we separate out factors of and write
the Vandermonde determinant as on the far right of(E4). G,(2) =N! CN NN 1)/22 @, de[P“)] (25)
Using the above expression fag(\) and substituting Eq.
(22) into Eq.(17) yields
-1

o N P =riTl N (26)
G,(2= T(N—l)/z f d)\_l_{ (\ - Z)v+N—1 p
=
o\t - -1k
x> @, de[kh]de:{(%‘z) } (23) P = fo dh FO) (A =27 N K, 27
r i~
The rather special form of the matrix expressed in &)
N allows us to calculate the determinant straightforwardly
- C,\‘/(\'Z s S e fd?\H (- 27N yielding de[P“] ANKIHIN, PY. Thus we have
(=2™ C1r---CN ' N
N N FR defafildefbl]] ] [(- 1)%/k!IPY
X{ |:E (Dr 2 Edlmle_[ )\ikdi] H )\Fi_l} (24) (I) de[P ] - i=1
e (- DNVIRA@)AY(D),

mavhere we have used Eq&), (19), (20), and(22) and the

In Eq. (24) we have rewritten the determinants as su e )\ , .
over all permutations by using the completely antisymmetricdefinitions ofC(k) ands(k). Substituting this resuit into Eq.
(25) we now need only do the sum over This sum, as

Levi-Cevita tensorecl___CN which is 1 if ¢q,...,cy IS @n ) ;
even permutation ofl, ... NJ, is -1 if it is an odd permy- ©€XPlained —above, is actualy a sum over 0
<ky<kn_1...<k;. Thus we have

tation, and is otherwise zero. As mentioned above, the quan-

tity (A\D) in the square brackets in E@4) is exponentially N

convergent to zero when any, becomes larggthus the G,(2=S > defalildefb][Twk), (28
quantity in the curly brackets is also exponentially conver- 0=ky...<k; i=1

gend. Further, so long ag;—1+#0 (which implies ¢;—1

+kdi¢0) the quantity in curly brackets goes to zero at the (- 1)k SN K

lower boundaryA;=0. This enables us to trivially integrate w(k) = f dh FO)( = 2)TN, (29)

by parts with respect th; where we differentiate the quantity

in the curly brackets and integrate the quantity outside thavhereS=NCQ,(z) and we have absorbed the numerical con-
curly brackets and we do not obtain any boundary terms. WestantsFy, into C. We can now address the sum in Eg8)
choose to do this integration exactly-1 times to obtain using the Cauchy-Binet theorefsee the Appendixo obtain
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G,(2=S defW(a,b;)] with the functionW(x) defined b N+v-1
@ tWab)] ) Y lim g(x,N+»,2) =x""*(- z)N+”‘1{1+—V

@ - X—00 (2%
W(x) = ngW(k) = fo d\ fON (N = 2)" Nl N (N+v-1)(N+v-2) }
) (- z%?

As by—o we use the first term of this expansion and

. N N . replace thej=N row of the matrix L; in Eq. (7) with
g(x,v+N,z)x™™. The factors ofx™ precisely cancel the (@b Y (~2)NL, In the denominatotO,) we haveAy(b)

prefactor\/ and we recover the desired result Eg) for N . (by)N1Ay 4(b) SO the factors oby cancel to give a finite

=N’ (where R,=1) up to the N-dependent normalization . . S .
prefactorC which we have not kept track of. To show that the ratio. We next leby_, — . In taking this limit the first term

normalization of Eq(7) (i.e.,C=1) is indeed correct we need in the expansion E¢30) would result in thg =N-1 row of

: — - ; Li; being exactly proportional to the=N row and thus we
f{)onlgls\t/;kr)llifi’rt]hatGo(z) 1. To do thigusing Eq.(13)] we need would obtain det;;=0. Thus, the leading divergence as

by-1— o is actually from the second term of the expansion
N-1 (- zab)™ (30). We can then replace the=N-1 row of L;; with (N
deff (N-1)! > zab) Q(z,0)7%, +v-1)(aby-1)V?(-2)*2. Again, the diverging powers of
m! by_; here are canceled by powers in the denomin&t®))
sinceAy-,(b) =(by-1)V?Ap-1(b). This procedure can be con-

Eq. (A1), usew(K)=(~2)N-1)! /K! for k=N-1 andw(K) tinued until we have let alby/,,---by— . We cancel all of

—0 otherwise, so the determinants on the left hand side O?we diverging terms, then factor out the numerical prefactors

. . such aN+v-1) to giveR,, and factor out common factors
Eq. (A1) are preciselyA(a) and A(b).] This completes the of -z to obtain) théJ general result quoted above in Egs.
proof for the case oN=N’.

. _ V(N—N’) . .
Using the results we have derived for square matrices wg)_(ll) times (-2) » which is due to the fact that, as

: . , -
can now easily derive results for rectangular matriceéﬂentlonecj abovg, our auxiliary problem s N’ zero ei
(N>N’). Given anN'-dimensional matrix8 with eigenval- genvalues. In this way we complete our more general proof.

uesby, ... by we consider an auxiliariN-dimensional ma-

trix B with the N’ eigenvaluedy, ... by plusN-N’ eigen-

valuesby,1, ... ,by. We then take a limit wherby/.q, ... by Given N-dimensional vectors; and b;, and a function
all go to infinity. By viewing the matrixM as being W(@2)=X{Z, w(i)Z convergent foiz| <p then if |ab;| <p for
A~127 B-12 it is clear that taking this limit drivesN—N’ all i,j we have(where the determinants are all taken with
columns of M to zero and we obtain effectively afN  respect to the indiceisandj) [13]

(30)

We can now remove the convergence functiodetting 6
—0 as discussed aboyveo obtain [see Eq.(12)] W(x)

m=0

which is easy to show using the Cauchy-Binet theorgm.

APPENDIX: CAUCHY-BINET THEOREM

X N’)-dimensional problentwith N—N’ additional zero ei- N
genvalues To take these limits we will use the expansion > defalildefblN]] ] wik) = defW(ab))]. (A1)
(Ref.[14], Eq. 8.35F O=kyy <y i=1
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