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Using a character expansion method, we calculate exactly the eigenvalue density of random matrices of the
form M †M whereM is a complex matrix drawn from a normalized distributionPsM d,exps−TrhAMBM †jd
with A and B positive definite(square) matrices of arbitrary dimensions. Such so-called correlated Wishart
matrices occur in many fields ranging from information theory to multivariate analysis.
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Physicists usually think of Wigner and Dyson as the fa-
thers of random matrix theory[1,2]. However, 20 years be-
fore their first work on the subject, Wishart[3] examined
random matrices of the formMM † as a tool for studying
multivariate data. The properties of these so-called Wishart
matrices, which are viewed as “fundamental to multivariate
statistical analysis”[4], also find important applications in
fields like information theory and communications[5–7],
mesoscopics[8], high energy physics[9], and econophysics
[10].

In many cases one is interested in Wishart matrices where
the elements ofM are not completely independent random
variables, but have correlations along rows and/or columns.
Important examples of this case occur in data analysis prob-
lems [11], where random samples have temporal and spatial
correlations, and particularly in wireless communication and
information theory[5,6]. The purpose of this paper is to de-
rive the eigenvalue density of correlated complex Wishart
matrices exactly. This problem has been solved previously
(and applications discussed) in the limit of large matrices
[6,11]. However, there are many situations where one is ex-
plicitly interested in matrices of finite size(or even small
size) [5–8], which we address in the current paper. We note
that if eitherA or B is proportional to unity, simpler tech-
niques can be used[12].

We first define the problem more precisely. LetM be an
N3N8 complex matrix chosen from a normalized distribu-
tion

PsM d = p−NN8N exps− TrhAMBM †jd s1d

with A andB positive definite square matrices that define the
correlations, and Tr indicating the trace. Here,N−1

=detfAgN8detfBgN and the factors ofp are normalization
constants. An equivalent definition would be to letM
=A−1/2Z B−1/2 where Z is a random complex matrix with
independent entries of zero mean and unit covariance. Note
thatA is N3N andB is N83N8. Without loss of generality,
we can assumeNùN8. For any operatorOsM d we define the
expectation bracketkOl to be an average over realizations of
M so thatkOl;edMOsM dPsM d. Note that the normaliza-
tion is such thatk1l=1.

Let ln be theN8 eigenvalues ofM †M or equivalently the
N8 nonzero eigenvalues ofMM † (we will also haveN−N8
eigenvalues ofMM † precisely zero). We define the follow-
ing quantities to calculate:

Gnszd =Kp
n=1

N8

sln − zdnL = kdetsM †M − zdnl, s2d

Hszd = ] Gnszd/] nn=0 =Ko
n=1

N8

lnsln − zdL , s3d

Csld = lime→0fHsl − ied − Hsl + iedg/2pi , s4d

=Ko
n=1

N8

usl − lndL =E
−`

l

dx rsxd, s5d

rsld = dCsld/dl =Ko
n=1

N8

dsl − lndL , s6d

whereu is the step function,l is assumed real, and in going
from Eq. (4) to Eq. (5) we have used lime→0 Im lns−y+ ied
=pusyd, which is true for realy. The quantity we are most
interested in is the eigenvalue densityrsld. From Eqs.
(2)–(6) it is clear that we can obtainr by calculatingGnszd.

Below, we will show that

Gnszd = QnszdRn det Lij , s7d

Qnszd−1 = DNsadDN8sbds− zdN8sN8−1d/2Jn, s8d

Jn = p
i=1

N−1

sn + idi , s9d

Rn = p
j=1

N−N8−1

sN + n − jdN−N8−j , s10d

whereRn is defined to be unity forN8ùN−1. In Eq.(7), Lij
is an N3N matrix with elementsLij =gsaibj ;n+N,zd for j
øN8 andLij =ai

j−1 for j .N8, where we have definedai and
bj to be the eigenvalues of the matricesA andB. The func-
tion g is given by

gsx;a,zd = xN−ae−zxGsa,− zxd s11d
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=xNE
0

`

dlsl − zda−1e−xl s12d

with G the incomplete gamma function[14], and we note that
for integera.0 we have the simple form

gsx,a,zd = xN−asa − 1d ! o
m=0

a−1

s− zxdm/m! s13d

In Eq. (8) and throughout this paper we use the notation

DVsxd = p
1øi, jøV

sxj − xid = detfxj
i−1g s14d

to represent aV-dimensional Vandermonde determinant.
FromGnszd we calculateCsld using Eqs.(3) and(4). The

differentiation[Eq. (3)] with respect ton brings down a fac-
tor of lnsl−zd in the argument of Eq.(12). This logarithm
becomes a step function when the limit is taken in Eq.(4).
We obtain

Csld = N8 − Q0sldR0o
n=1

N

det Kij
snd, s15d

where we also usedGn=0szd;1. Here, we have definedN
3N matricesKsnd with Kij

snd=gsaibj ;N,ld for nÞ i and j
øN8 and Kij

snd=ai
j−1 for j .N8 and nÞ i. For the case ofi

=n we haveKnj
snd=e−anbjlsN−1d! for j øN8 and Knj

snd=0 for
j .N8.

We then differentiate Eq.(15) [see Eq.(6)] to obtain

rsld = Q0sldR0o
n=1

N Fdet K̃ij
snd + o

m=1,mÞn

N

det Tij
snmdG , s16d

where K̃snd and Tsnmd are N3N matrices with elements de-

fined as follows: K̃ij
snd=Kij

snd for i Þn and K̃nj
snd=hanbj

+fN8sN8−1d /2g /ljKnj
snd for j øN8 and K̃nj

snd=0 for j .N8.
Also Tij

snmd=Kij
snd for i Þm with Tmj

snmd=sN−1dambj gsambj ,N
−1,ld for j øN8 andTmj

snmd=0 for j .N8.
The above expressions are our main results. The remain-

der of this paper comprises the proof of Eqs.(7)–(11) from
which all of our other results follow. We start by focusing on
the case of square matricesM (so N=N8). We write

Gnszd = Np−N2E dM e−TrhAMBM †j detsMM † − zdn.

We then defineM =UmV wherem is a diagonal matrix of
the singular valuesmi of M andU andV are unitary matri-
ces. We then separate the integral overM into integrals over
the eigenvaluesli = umiu2 of MM † and “angular” integrals
over U and V. This approach, common in random matrix
theory[1], yields

Gnszd = CNE dlp
j=1

N

sl j − zdnDNsld2DA,Bsld, s17d

wherel=mm† is the diagonal matrix of eigenvaluesli, and
edl=pi=1

N e0
`dli, andC is anN-dependent numerical constant

(which we will not keep track of explicitly but will fix at the
end of the calculation). Here, DNsld2 is the Vandermonde
determinant squared of theli’s (which is the Jacobian of the
transformation) and

DA,Bsld =E
UsNd

dUE
UsNd

dV e−TrhAUmVBV †m†U†j,

whereU and V are N3N unitary matrices which are inte-
grated with the usual Haar measure overUsNd. Note that we
have written the integralDA,B as a function ofl=mm† (we
will see that this is indeed true). HereCNDNsld2DA,Bsld is
precisely the joint probability density of thel’s. As such, it is
clear that this density(and alsoD) must vanish exponentially
if any of the l’s is taken to infinity(this will be important
below). In particular, whenA, B are identity matrices we can
see thatDA,Bsld,exps−oi lid.

To address these integrals overUsNd, we use the character
expansion method discussed in depth in Ref.[13]. This al-
lows us to write

e−TrhAUmVBV †m†U†j = o
r

arxrsAUmVBV †m†U†d,

where ar are expansion coefficients(discussed below), the
sum is over representationsr of GlsNd, andxr is the charac-
ter of the group element in the proper representation.[Note
that the representation theory ofGlsNd is identical to that of
UsNd.] A character is just the trace taken in the proper rep-
resentation, so we have

xrsAUmVBV †m†U†d = Aab
r Ubc

r mcd
r Vde

r Bef
r Vgf

r*mhg
r* Uah

r*

with lower repeated indices summed(while the superscripts
r tell us that the matrix is in representationr). We now use
the orthogonality property[13]

E
UsNd

dU Uab
r Ucd

r* = dr
−1dacdbd

with dr the dimension of representationr (discussed below).
Combining the above three equations we obtain

DA,Bsld = o
r

ardr
−2 xrsAdxrsBdxrsld. s18d

As discussed in Ref.[13], each representationr is specified
by a set of increasing integers 0økN,kN−1, ¯ ,k1, so the
sum written overr is actually an ordered sum over thek’s
(kj =N+nj − j in the notation of Ref.[13]). In Ref. [13] it is
also found thatar =sskddetf1/skj + i −Nd!g=sskdDNskd /Cskd
where Cskd=p j=1

N kj!. Here sskd=s−1dv with v=NsN−1d /2
−o j kj. In the same work[13] it is also shown thatar /dr

=sskdFN/Cskd with FN=p j=1
N−1 j !, from which we then obtain

ardr
−2 = sskdFN

2/DNskdCskd. s19d

The Weyl character formula tells us that[13]
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xrsXd = detfxi
kjg/DNsxd s20d

with kj the integers describing the representationr, andxi the
eigenvalues ofX. Substituting Eq.(20) into Eq. (18) we
obtain

DNsld2DA,Bsld = DNsldo
r

Fr detfli
kjg, s21d

Fr = ardr
−2xrsAdxrsBd. s22d

We next need the useful identity:

DNsld =
1

s− zdNsN−1d/2detFS li

li − z
D j−1Gp

n=1

N

sln − zdN−1.

To show this we note that sinceDNsld=pi, jsli −l jd we
can freely add a constant to eachli and not changeDN. Thus,
we have DNsld=DNsl−zd. Next we use DNsx1, . . . ,xNd
=DNs−1/x1, . . . ,−1/xNdp j=1

N xj
N−1 so that we can relateDNsld

to DNs1/fz−lgd. We then use 1/sz−ld−1/z=l / fzsz−ldg
and we again shift each term in the Vandermonde determi-
nant by −1/z. Finally, we separate out factors of −z and write
the Vandermonde determinant as on the far right of Eq.(14).

Using the above expression forDNsld and substituting Eq.
(21) into Eq. (17) yields

Gnszd =
CN

s− zdNsN−1d/2 E dlp
i=1

N

sli − zdn+N−1

3o
r

Fr detfli
kjgdetFS li

li − z
D j−1G s23d

=
CN

s− zdNsN−1d/2 o
c1,. . .,cN

ec1. . .cN
E dlp

i=1

N

sli − zdn+N−ci

3HFo
r

Fr o
d1¯dN

ed1¯dNp
i=1

N

li
kdiGp

i=1

N

li
ci−1J . s24d

In Eq. (24) we have rewritten the determinants as sums
over all permutations by using the completely antisymmetric
Levi-Cevità tensorec1. . .cN

which is 1 if c1, . . . ,cN is an
even permutation off1, . . . ,Ng, is −1 if it is an odd permu-
tation, and is otherwise zero. As mentioned above, the quan-
tity (DND) in the square brackets in Eq.(24) is exponentially
convergent to zero when anyli becomes large(thus the
quantity in the curly brackets is also exponentially conver-
gent). Further, so long asci −1Þ0 (which implies ci −1
+kdi

Þ0) the quantity in curly brackets goes to zero at the
lower boundaryli =0. This enables us to trivially integrate
by parts with respect toli where we differentiate the quantity
in the curly brackets and integrate the quantity outside the
curly brackets and we do not obtain any boundary terms. We
choose to do this integration exactlyci −1 times to obtain

Gnszd =
CN

s− zdNsN−1d/2 o
c1,. . .,cN

ec1¯cN
E dlp

i=1

N

sli − zdn+N−1

3s− 1dci−1o
r

Fr o
d1¯dN

ed1¯dNp
i=1

N

li
kdi p

p=1

ci−1 kdi
+ p

n + N − p
.

We would now like to interchange the order of integration
and summation such that all integrals are done first. How-
ever, if we did this we would end up with divergent integrals.
To fix this problem, we insert a cutoff function such as
fsld=expf−dlg and at the end of the calculation we taked to
zero. (The precise form of the cutoff function will not mat-
ter.) This allows us to reorder and write

Gnszd =
CN

s− zdNsN−1d/2o
r

Fr o
c1¯cN

ec1¯cN o
d1¯dN

ed1¯dN

3p
i=1

n

s− 1dci−1FE
0

`

dli fslidsli − zdn+N−1li
kdi

3p
p=1

ci−1 kdi
+ p

n + N − p
G .

We can now do the sums overc’s andd’s to obtain

Gnszd = N ! CN z−NsN−1d/2o
r

Fr detfPij
srdg, s25d

Pij
srd = Pi1

srdp
p=1

j−1
ki + p

n + N − p
, s26d

Pi1
srd =E

0

`

dl fsldsl − zdn+N−1 lki . s27d

The rather special form of the matrix expressed in Eq.(26)
allows us to calculate the determinant straightforwardly
yielding detfPij

srdg=DNskdJn
−1pi=1

N Pi1
srd. Thus we have

Fr detfPij
srdg =

FN
2 detfai

kjgdetfbi
kjgp

i=1

N

fs− 1dki/ki!gPi1
srd

s− 1dNsN−1d/2DNsadDNsbdJn

,

where we have used Eqs.(9), (19), (20), and (22) and the
definitions ofCskd andsskd. Substituting this result into Eq.
(25) we now need only do the sum overr. This sum, as
explained above, is actually a sum over 0
økN,kN−1. . .,k1. Thus we have

Gnszd = S o
0økN. . .,k1

detfai
kjgdetfbi

kjgp
i=1

N

wskid, s28d

wskd =
s− 1dk

k!
E

0

`

dl fsldsl − zdn+N−1lk, s29d

whereS=NCQnszd and we have absorbed the numerical con-
stantsFN into C. We can now address the sum in Eq.(28)
using the Cauchy-Binet theorem(see the Appendix) to obtain
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Gnszd=S detfWsaibjdg with the functionWsxd defined by

Wsxd = o
k=0

`

xkwskd =E
0

`

dl fsldsl − zdn+N−1e−xl.

We can now remove the convergence functionf (letting d
→0 as discussed above) to obtain [see Eq. (12)] Wsxd
→gsx,n+N,zdx−N. The factors ofx−N precisely cancel the
prefactorN and we recover the desired result Eq.(7) for N
=N8 (where Rn=1) up to the N-dependent normalization
prefactorC which we have not kept track of. To show that the
normalization of Eq.(7) (i.e.,C=1) is indeed correct we need
only verify thatG0szd=1. To do this[using Eq.(13)] we need
to establish

detFsN − 1d ! o
m=0

N−1
s− zaibjdm

m! G = Qsz,0d−1,

which is easy to show using the Cauchy-Binet theorem.[In
Eq. (A1), usewskd=s−zdksN−1d ! / k! for køN−1 andwskd
=0 otherwise, so the determinants on the left hand side of
Eq. (A1) are preciselyDsad and Dsbd.] This completes the
proof for the case ofN=N8.

Using the results we have derived for square matrices we
can now easily derive results for rectangular matrices
sN.N8d. Given anN8-dimensional matrixB with eigenval-
uesb1, . . . ,bN8 we consider an auxiliaryN-dimensional ma-

trix B̃ with the N8 eigenvaluesb1, . . . ,bN8 plus N−N8 eigen-
valuesbN8+1, . . . ,bN. We then take a limit wherebN8+1, . . . ,bN

all go to infinity. By viewing the matrixM as being

A−1/2Z B̃−1/2 it is clear that taking this limit drivesN−N8
columns of M to zero and we obtain effectively ansN
3N8d-dimensional problem(with N−N8 additional zero ei-
genvalues). To take these limits we will use the expansion
(Ref. [14], Eq. 8.357)

lim
x→`

gsx,N + n,zd = xN−1s− zdN+n−1F1 +
N + n − 1

s− zxd

+
sN + n − 1dsN + n − 2d

s− zxd2 + ¯G . s30d

As bN→` we use the first term of this expansion and
replace the j =N row of the matrix Lij in Eq. (7) with
saibNdN−1s−zdN+n−1. In the denominatorsQnd we haveDNsbd
→ sbNdN−1DN−1sbd so the factors ofbN cancel to give a finite
ratio. We next letbN−1→`. In taking this limit the first term
in the expansion Eq.(30) would result in thej =N−1 row of
Lij being exactly proportional to thej =N row and thus we
would obtain detLij =0. Thus, the leading divergence as
bN−1→` is actually from the second term of the expansion
(30). We can then replace thej =N−1 row of Lij with sN
+n−1dsaibN−1dN−2s−zdN+n−2. Again, the diverging powers of
bN−1 here are canceled by powers in the denominatorsQnd
sinceDN−2sbd=sbN−1dN−2DN−1sbd. This procedure can be con-
tinued until we have let allbN8+1¯bN→`. We cancel all of
the diverging terms, then factor out the numerical prefactors
(such asN+n−1) to giveRn, and factor out common factors
of −z to obtain the general result quoted above in Eqs.
(7)–(11) times s−zdnsN−N8d, which is due to the fact that, as
mentioned above, our auxiliary problem hasN−N8 zero ei-
genvalues. In this way we complete our more general proof.

APPENDIX: CAUCHY-BINET THEOREM

Given N-dimensional vectorsai and bi, and a function
Wszd=oi=0

` wsidzi convergent foruzu,r then if uaibju,r for
all i , j we have(where the determinants are all taken with
respect to the indicesi and j) [13]

o
0økN¯,k1

detfai
kjgdetfbi

kjgp
i=1

N

wskid = detfWsaibjdg. sA1d
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